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Abstract—Upper and lower bounds are established on the spectral and maximum norms (and hence on the
corresponding condition numbers) of the stiffness, flexibility (the inverse of the stiffness) and mass matrices
generated from regular and irregular meshes of finite elements. Explicit expressions for these bounds are derived,
in terms of the intrinsic and discretization parameters, for second and fourth order problems in one, two and
three dimensions discretized with linear, triangular and tetrahedronal elements.

INTRODUCTION

A PROCEDURE has been devised in Ref. [1] (also briefly described in Ref. [2]) for bounding
the extremal eigenvalues of the global stiffness and mass matrices, generated by the finite
element method, in terms of the extremal eigenvalues of the element stiffness and mass
matrices, the maximal number of elements meeting at a nodal point and the exact funda-
mental frequency of the structure. The attractiveness of this procedure lies both in its
generality and computability ; it can be applied to regular as well as to irregular meshes,
and once an estimate for the fundamental frequency of the structure is known numerical
bounds are readily computed.

To be more precise : the bounds on the eigenvalues of the global mass matrix involve
the eigenvalues of only the element mass matrices whereas the bounds on the eigenvalues
of the global stiffness matrix involve the eigenvalues of both the element mass and stiff-
ness matrices in addition to the fundamental frequency of the structure. Thus, for the
stiffness matrix, the mass matrix needed for bounding its eigenvalues may be derived with
any fictitious density distribution. This mass matrix has therefore nothing to do with the
actual matrix that appears in the dynamic analysis of the structure. But once a fictitious
density distribution has been decided upon the fundamental frequency of the structure
appearing in the bounding expressions must refer to this particular density distribution.
The simplest distribution is certainly the uniform one. Since the density distribution in
this case is independent of the mesh so will the frequency be. Also, the fundamental fre-
quency for this distribution has been computed and recorded [3] for a fairly large number
of regularly shaped structures. These can be used for estimating [4] the fundamental
frequencies of less regular structures.

Indeed, by using the technique of Ref. [1] with uniform density distribution we were
able to obtain a substantial amount of information about the behavior of the condition

1 Assistant Professor, Department of Mathematics.

1013



1014 Isaac FRIED

numbers of the stiffness matrix of membranes and plates [5], nearly incompressible elastic
solids [6] and arches and shells either thin [7, 8] or thick [9, 10].

It was observed, however, in these analyses that with a uniform density distribution
the sharpness of the bounds decreased as the mesh became less and less regular (i.e. with
large variations in the size of the elements). To sharpen the bounds in irregular meshes we
introduce in this paper nonuniform, mesh dependent, density distributions. The funda-
mental frequency is thus no more mesh independent and we will derive some bounds on it.

In the case of regularly shaped domains, uniform meshes and symmetric (periodic)
boundary conditions the stiffness matrix becomes regular enough for its eigenvalues to
be computed algebraically. This has been used by Kelsey, Lee and Mak [11] to study the
influence of the basic discretization and intrinsic parameters (such as mesh size and order
of differential operator) on the spectral condition number of the stiffness matrix associated
with such regular problems.

Bounds on the maximum (/) norm of the finite element stiffness, flexibility and mass
matrices were established by Descloux [12, 13] and in Refs. [6 and 14]. The difference
between these two analyses being that whereas the bounds established by Descloux on
the norms of the stiffness and flexibility matrices involve bounds on the [ norms of the
mass matrix and its inverse, the analysis of Refs. [6 and 14] does not involve the mass
matrix at all. The role of the fundamental frequency in the spectral (/,) norms is taken over,
in Refs. [6 and 14], by the maximum of Green’s (the influence) function of the structure.
This restricts the applicability range of these I bounds since not all structures (mem-
branes, for instance) can carry point loads and the maximum of Green’s function becomes
infinite. Here we replace the point loads by a load distributed over small circles (spheres
in space) and study with this the dependence of the I, norms of the stiffness and flexibility
matrices, for two and three dimensional second order problems discretized with triangular
and tetrahedronal elements, on the mesh parameters.

SPECTRAL (/,) NORM AND CONDITION NUMBER

The method of finite elements reduces, like any other discretization method, the
continuous boundary value problem and eigenvalue problem

Lu=f and Lu= ipu inD (1)

where L is a linear (elliptic) differential operator, where p > 0 is the density distribution
and where the function u has to satisfy some conditions on the boundary D of D, into
the algebraic problems

KU=F and KU =puMU 2)

where K and M are the global stiffness and mass (Gram) matrices, respectively.
Since K and M are symmetric and at least positive semi-definite the spectral norms of
the stiffness matrix K and flexibility matrix K~ ! can be written as

| K|, = maximum eigenvalue of K
1K™,

and the same is true for the mass matrix M. We denote by N the number of rows (columns)
in K and M, and by 2%, AX 1Y and /¥ the lowest (1st) and highest (Nth) eigenvalues of

3)

1/minimum eigenvalue of K

Il
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K and M. In this notation the spectral condition numbers C,(K) = |K|,|K~!||, of K
and C,(M) = |[M||,|M ™|, of M become

Cy(K) = 23/A7 and Cy(M) = A¥/il. )

We denote by k, and m, the element stiffness and mass matrices associated with the eth
element. By u, we denote the portion of U associated with the eth element. The quad-
ratics UTKU and UTMU can be written then as

Ne Ne
UT™KU = 3 ulku, and U'MU = Y ulmu, 5)
e=1 e=1
where summation is carried over all the Ne finite elements in the mesh.
If we denote by ¢,¢,,. .., ¢, the n shape function in the element, the element quad-
ratic ulm,u, is given by

uTmu, =f Plusdy +itsby+ ..+ up) v ©)
¥V

and hence for p > 0 (equality holding in one dimension only at distinct points, in two
dimensions only on distinct lines and in three dimensions only on distinct surfaces), if the
shape functions are linearly independent then m, is positive definite for all e =1,2,..., Ne.

By /%, ik, AT and A" we denote the lowest (Ist) and highest (nth) eigenvalues of the
element stiffness and mass matrices k and m. We have then that

KieuTu, < uTku, < MeuTu, e=1,2,...,Ne N
and
AmeuTy, < ulmu, < Aeulu, e=1,2,...,Ne. 8)

For a normalized (UTU = 1) vector U it can be shown that

Ne
1< Y ulu, < poa ©

e=1

where p,,,. denotes the maximum number of elements meeting at a nodal point.
To derive an upper bound on AX and A¥ we assume U in equation (5) to be the normal-
ized eigenvector corresponding to A¥ and Y. Equations (7, 8 and 9) lead then to

AN < Pmax max(e) and  AY < pp,, max(4y). (10)

In order to derive a lower bound on iX and A} we select U in equation (5) to be such that
for the element where max,(44) occurs, uTu, = 1. From this selection of U we get

A% > max(4<) and ¥ > max(i™). {1n

Or
max(4) < Af < puax max(4;°) (12)

and
max(4y?) < A¥ < P, max(4)) (13)

where e ranges over all the Ne finite elements in the mesh.
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In an entirely analogous manner we obtain for the lowest ¢igenvalues of K and M

min(4) < A% < i (14)
and
min(A7e) < A < AY. (13)

It is appropriate to recall here a related theorem by Irons and Teharne [15] asserting that
if

’I‘k T
o<t 2 (16)
U, m,u,
foralle = 1,2,...., Ne, then also
< UTKU <Q 17
C=UTmMU =

holds. But since the element stiffness matrix k is usually only positive semidefinite, both
A% and w are zero and the lower bound in both equations (14 and 17) is reduced to zero,
expressing the mere trivial fact that 0 < ¥ < A%,

To obtain non trivial bounds on A¥ we make use of the variational nature of the finite
element method and Rayleigh’s principle. It asserts that if 4, is the exact eigenvalue of
the structure then for any U # 0

UTKU/UT™U > A,. (18)

Choosing U in equation (18) to be the eigenvector corresponding to ¥ we obtain from
equations (15 and 18) that

AX > 2, min(47e). (19)

For deriving an upper bound on ¥ we choose U to be the eigenvector corresponding to
the lowest approximate finite element eigenvalue g, such that

UTKU/U™™U = p, (20)

which results, due to equation (13), in

’{II( S lulpmax max(/lzne)- (21)

Therefore
X1 min()“'lrle) < ill( < Ky Pmax max(,l:,"'-’) (22)
and a sufficient condition for K™ ', = 1/Af to exist is that AT* > O fore = 1,2,..., Ne.

This is assured, however, by the linear independence of the shape functions.
With all that, the bounds on C,(K) and C,(M) become

k Ak
maX(/{") < CZ(K) < max(/f'n)pmax
Ky max('{nm)pmax )Ll mln(l’ln)

(23)
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and

Max(4;)Pmax
——romax 24
min(A7) (24)

1 <C,(M) <
In equation (23) y, is finite element approximation to 4,. For a sufficiently fine mesh
they will be close enough [16] for 4, to be substituted for g, .

The upper bound on C,(K) given in equation (23) was derived under the assumption
that the finite elements strictly satisfy the continuity requirements posed by the variational
principle. However, the upper bound on C,(K) will hold asymptotically for a sufficiently
fine mesh, even if the continuity requirements are not strictly enforced (that is, the elements
do not conform), provided that the lowest finite element eigenvalue converges. Then the
exact eigenvalue 4; in equation (16) can be replaced by the corresponding approximate
eigenvalue y, .

It should be noticed that if the density distribution over the structure is being chosen
independently of the mesh then 4, (the fundamental frequency squared) will depend only
on the shape of the structure (domain), the order of the differential equation involved, the
boundary conditions, the density distribution and the (elastic) coefficients. The usefulness
of a nonuniform density distribution is in drawing max(4])/min{4A]) as close as possible
to 1. This may tie 4, to the mesh parameters and the next section is devoted to this problem.

ESTIMATION OF THE FUNDAMENTAL FREQUENCY

The eigenvalues of the element mass matrix m depend on the geometry of the element,
the degree of the polynomial in the shape functions and the density inside it. For a uniform
mesh the most appropriate density distribution is uniform since then max(A}'?)/min(47) is
uniform over all the Ne finite elements. In the case of a nonuniform mesh we choose the
density so as to make AT< equal over all the Ne elements. This will tie the fundamental
frequency of the structure to the mesh layout. It may well happen that due to a regular
variation of the mesh size the density distribution can also be chosen to vary regularly
enough for the fundamental frequency to be directly computed. In the general case the
mesh will be too irregular for a direct computation of the fundamental frequency and we
need some universal bounds on it which we intend to develop now.

Let u be the eigenfunction corresponding to the minimum eigenvalue 4, such that

Ay = E(u, u)/(u, u) (25)

in which E(u, u) denotes the quadratic internal (say elastic) energy and where (1, 4} denotes
the kinetic energy explicitly defined by

(u, u) = J pu? du. (26)
D
Let the total mass of the structure be one

f pdo = 1. 27
D
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We obtain, then, from equation (26) that

(4, u) < max|u?| (28)
D

which prompts us to introduce the characteristic number ®
® = min(E(u, u)/max|u?|) (29)
u D

and
o < A, (30)

for any density distribution over the structure maintaining a unit mass. This ® number
is, in fact, the fundamental eigenvalue (frequency squared) of the structure with all the
mass concentrated at the crest of the corresponding eigenfunction.

We denote by G(x, &) the influence (Green’s) function of the structure (i.e. the deflection
at point £ due to a unit point load at point x, or vice versa). The continuous eigenprobiem
can be written with this function in the form

u(x) = lf G(x, )p(E)u(l) de. (31)
D

Suppose that x appearing in equation (31) is just the point at which u(x) attains its maxi-
mum. If all the mass is concentrated at that point we get from equation (31) that

® = 1/T,T = max G(x, x). (32)
D

For a string of unit tension and length L: I" = L/4 and hence ¢ = 4/L whereas a uniform
density yields 4, = n?/L. This ® is the fundamental eigenvalue of the string with all its
mass concentrated at the center. No other density distribution with unit mass will result
in a lower frequency. For a simply supported beam of uniform density, unit mass and
unit bending flexibility: 4, = n*/L3, T = L3/48 and consequently ® = 48/L3. This ® is,
again, the fundamental eigenvalue of the beam with all its mass at the center and no other
density distribution produces a lower eigenvalue. For a clamped circular plate of radius
R, unit bending flexibility and unit mass: 4, = 104n/R? and ¢ = 16n/R2 By a well known
theorem of Rayleigh this @ is lower than the ® number of any other clamped plate com-
pletely enclosed inside the circle (the proof to this theorem hinges on the twin facts that
the displacements of the clamped plate can be extended up to the clamped circle and that
the fundamental frequency minimizes the quotient in equation (25)).

The membrane and the three dimensional elastic solid can carry no point loads,
G(x, x) = oo in these cases, and consequently the ® number as defined in equation (29)
vanishes. To obtain a nontrivial bound on 1, we must avoid in these cases the infinite
density of the point mass. We therefore pose an addition restriction on p and define @ as

® = min[E(u, u)/(u, u)] (33)
with

0<p<pnx and f pdv =1 (34)
D
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We will compute now the ® number for the problem
U+, +u,+Au=0 inD

(35)
u=0 ondD

where D is a spherical (circular) domain. This @ number is inferior to the ® number of any
other domain with u vanishing on its surface completely enclosed inside the sphere.
Multiplying equation (31) by u(x) dx and integrating results in

f W2(x) dx = Af f Glx, Ep(Eu(xu®) dx dE. (36)
D DYD

Green’s function G(x, &) is positive for the cases we consider and hence according to
equation (36), u(x) corresponding to the lowest eigenvalue A, cannot be negative. Had it
been negative at some area we could have replaced it by — u(x) leaving the left hand integral
in equation (36) unchanged but increasing the right hand one and consequently de-
creasing (the assumed lowest) eigenvalue A, . If we assume again that the point x in equation
(31) is that at which u(x) attains its highest value, then since u(£) > 0 we obtain from this
equation that

1<, G eperde (37
D
The fundamental solutions of equation (35) with p = 0 are
1 1
Y(r) = ﬂlog(l/r) and Y(r) = o (38)

for the circle and sphere, respectively. Green’s function for these domains is given in
terms of the fundamental solutions by

G(x, &) = w(r)-w(%p) (39)
where in n dimensions
n n n RZ 2
st = z é,z’ r’ = Z (xj_ﬁj)z’ P = Z (xj—s_zéj) . (40)
ji=1 j=1 j=1

Since G(r, £) is monotonic the density p(¢) maximizing the integral in equation (37) is
constant inside one of the circular contours of G(x, £). Let u(x) be the value of the integral
in equation (37), C the contour value, x, the center of the circular contour and a its radius,

then with z = ¢**C we have that
1 1—- 1 — 2
2n a 4n a (41)

xo = x(1=2)/(x*=2), a=((x*=-D/x*—2).
The maximum of u(x) occurs at the center x = 0 such that G(0,r) = (1/2r) log(R/r)
and consequently
4n

o> — 2 =1 42
= T+2log(Rja)y ¢ Pmax (42)
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where equality is attained for a sufficiently small a. For a sphere of radius R we have

1j1 1
1) = ——= 4
6(0.7) 47{(7' R) (43)
and therefore
47R 3
d > 3—R/*2—a‘:*1-, 4na pmax/3 =1 (44)

where equality is approached as a decreases.

If the density is distributed over the mesh in such a way that A7—the lowest eigen-
value of the eth element—is equal over all the finite elements in the mesh, then the lower
bound on 4¥ and the upper bound on C,(K) become

K > @im (45)
and
max{A)p,...
C.K) € —r T 28,
AK) < o (46)

SECOND ORDER PROBLEMS

We start analyzing this class of problems by carefully considering the simplest of
them all—the fixed string discretized by linear finite elements. The relevant element
stiffness and mass matrices are given by

o1 -1 ph(z 1)
k, = — and =-£2 47
¢ h(—l 1) M= \1 2 “n

€

where h, and p, are element size and the density inside it, respectively. 1t is appropriate
to point out here that A7 and 4 appearing in the upper bound expression on C,(K) in
equation (23) are computed from k, and m, with no regard to the boundary conditions
since any constraint on these matrices can only lower 4* and raise A7. But A* in the lower
bound expression on C,{K) in equation (23) must be computed from a constrained element
matrix.

For a uniform density distribution p, = 1 we have that

ke = 2/h,, Te = h/6 and A5 = h,/2 (48)
Hence with 4, = n? and u, = A, = n? we get from equations (12, 22 and 23) that
I//hmin < lﬁ < 4/hmin9 nzhmin/ﬁ < Alf < 7rthax (49)
and therefore
24
nzhminhmax S CZ(K) S 7!:zhs-znin (50)

where h,;, and h,,, are the extremal mesh sizes. For the mass matrix M we get

1 < C,(M) < 6k /ho. (51)
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Varying the density according to
p.h, = 1/Ne (52)

where Ne denotes the total number of finite elements in the mesh, we get from equation
(45), recalling that for the fixed string of unit length @ = 4, that

C(K) < Ne/h (53)

min*
Next we consider the two dimensional membrane discretized with linear (first order)
triangular elements. Here

2 11
1 24
kij= 2Al,ljn, n; and mzﬁl 21 (54)
1 1 2

where I;, A and n; denote the ith side of the triangle, its area and a unit inward vector
normal to the ith side. Assuming a uniform density p = 1 we get

im= A6, im=24/3 and l/sinf < ¥ < 6/tgh (55)

where @ is the smallest angle in the triangle. For a sufficiently fine mesh (4; =~ u,) we thus
obtain that

1/Sin 9 < ’:)'V( < 6pmax/tg 0’ mm/6 < 'J'K < 2'llpmax max/3 (56)
and consequently

3 36pmax

< CoK) € 57
20, 510 O~ ) = T g 04, o

in which A4,,, and A4, are the extremal element areas. With the density distribution
p.A, = 1/Ne e=12,...,Ne (58)

the first eigenvalue of m becomes AT = 1/6Ne and hence according to equations (45 and 46)

fo o HT:)g(R/Z) (59)
where
na* = NeA,,... (60)
Therefore
C,(K) < 9PmaxNe(; ;; 2010g(R/a)) 61)

The function log(R/a) grows rather slowly with R/a and the main source of ill conditioning
with triangular elements is seen to be very acute angles rather than large mesh ratios.
This is of prime importance for problems including singularities where steep variations
in the mesh size are required [17] for assuring the full accuracy provided by the shape
functions. These large variations in the mesh size will not introduce the feared decline in
the condition of the stiffness matrix unless the passage from the small elements to the
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larger one will necessitate exceptionally thin elements. Without the ill-conditioning argu-
ment one can hardly see why not use polynomial elements, properly spaced around the
singular point instead of including singular terms into the shape functions, a procedure
that certainly encumbers the finite element method.

The a priori estimates for A%, AX and C,(K) as given in equations (56, 57, 59 and 61)
will be compared now with numerically computed values. The problem chosen for these
tests is that of a circular (in fact polygonal) membrane fixed on its circumference and
discretized with an irregular mesh of triangular element as shown in Fig. 1. The funda-
mental eigenvalue of a circular membrane of unit radius and with a uniform unit density

W
— b
5

LA

Fi6. 1. Circular membrane discretized with triangular elements. Figure shows one quarter of the circle.

is approximately 4, = 5-7 (the replacement of the circular boundary by a polygonal one
results in only negligible [18] changes in the fundamental eigenvalue). First we consider
linear elements. For these, distributed uniformly along the radius (that is, r, = i/5 in
Fig. 1) and with a uniform density we have a priori that

mein(/{'{“) = 1/300, X > 002 (62)
The bound on A¥ can be computed directly by Gerschgorin’s theorem, yielding 1¥ < 15
and consequently a priori
C,(K) < 750, log C,(K) < 2-88. (63)
Computationally we obtain
R =11, X =037, C,(K) = 30, log C,(K) = 1-5. (64)



Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices 1023

The number of decimals lost in the numerical solution of the algebraic system is roughly
given [19] by log C,(K) (for more on the relation between the condition number and the
round-off errors see Refs. [20, 21 and 22]). Relative to (14 or 24) decimals available in the
modern computers the a priori estimate given by equation (63) is, therefore, excellent.

Next we apply our estimate for A¥, A¥ and C,(K) to the same membrane with the same
elements distributed this time cubically along the radius (that is, r; = i3/125). Here equation
(57) with a uniform mesh distribution yields ¥ > 1-8 10™*. From Gerschgorin’s theorem
we get AX < 20 and hence a priori

C,(K) < 10°, log C,(K) < 5-0. (65)

Under the assumption that all the mass is concentrated near the center we get AX > 1/300,
4% < 20 and consequently we have that a priori

C,(K) < 6000 or logC,K) < 38. (66)
Computationally we get
=014, K =155, C,(K) = 110, log C,(K) = 2-01. 67

Again, both estimate (57) with a uniform density distribution and estimate (61) with a
clustered mass give reasonably good and realistic bounds.

We have repeated the above calculations for a membrane discretized with triangular
quadratic elements (with six nodal points, three at the vertices and three at the mid sides).
For a uniform mesh of four elements along the radius we obtain computationally that

A =81, A% =009, C,(K) = 92, log C,(K) = 196 (68)
while for a mesh varying cubically along the radius we get
AR = 164, X = 1/30, C,(K) = 480, log C,(K) = 2-68 (69)

and indeed the stiffness matrix remains well conditioned even with a strongly irregular
mesh.

The most versatile three dimensional element is the tetrahedronal element. The first
order element has four nodal points at the vertices and its element stiffness and mass
matrices are given by
1

1 |4
k,.j=6—Vs,-sjni.nj i,j=1,2,3,4 and mzm1

1

(70)

—_ = N
[ U J T

2

where V denotes the volume of the element, s; i = 1,2, 3,4 its four facesand n; i = 1,2, 3,4
four unit inward vectors normal to the faces. The extremal eigenvalues of k and m are here
(with p = 1)

AT=V/10, A®=V/2 and s?

max.

6V < A < 253,,/3V (71)
resulting with s2_ /V = H in

Hmin/6 < il{l( < 2pmzm[-1max/3 (72)
'11 me/lo < '{Il( < ulpmameax/z (73)
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or

H

20pmaH
max < CZ(K) S pmax max

4
3.ulpmameax ._ 3'1ll/min (7 )

and the stiffness matrix becomes invariably ill-conditioned as H,,, increases and the
element becomes thinner. With a nonuniform density distribution we get from equations
(45, 46 and 42) that

S5PmaxHmaxN €

22X (3R/2a—1) (75)

C,(K) <
AK) < 3nR

where R is the radius of the sphere completely enclosing the domain and where

4na® = 3NeV,, . (76)
If R > a equations (75 and 76) lead to the simpler bound
4 3 Hmax

CZ(K) < §pmaxNef Vg, - (77)

In Ref. [6] it has been shown that in the case of a nearly incompressible solid (v T 1),
the condition number of the stiffness matrix is bounded by

E h™? E h™2
<C2(K)SC1,1_11—2V

CZ/J—I 11—y = (78)

where 4 is the dia. of the element, E is the elastic modulus, v is Poisson’s ratio, and ¢, and
¢, are two coefficients independent of & and v. According to equation (78) the condition
of the stiffness matrix deteriorates (provided that u, =~ A, and that A, remains bounded
as v T 5). However, even if v is very near to 4 the discretization error may not warrant the
introduction of the exact v, it might any way be much higher than the error due to a suffi-
ciently small change in v. Only a finer mesh with a lower discretization error will require a
Poisson ratio nearer to 1.

FOURTH ORDER PROBLEMS

The analysis of two dimensional plate problems discretized with rectangular or tri-
angular elements is a bit too bulky for the present paper. We will be able nevertheless to
get significant insight into the behavior of C,(K) in these problems by considering in detail
a more accessible problem—that of a one dimensional beam discretized with cubic ele-
ments. The element stiffness and mass matrices for an element of size h are given by

12 6h —12  6h 156  22h 54 —13h

Lo L 6h 4h* —6h 2 and m o 22h 4 13h  —3h? 79
Pl-12 —6h 12 —6h 4201 54  13n 156 —22h
6h 2h2 —6h 4k’ —13h —3h* —22h 4h?

referring to u,, u,,, 4, and u,,. Assume first a uniform mesh and a uniform density p = 1.
Suppose also that A is scaled out from the interior of k and m by replacing u, by hu,. With
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this the extremal eigenvalues of k and m become

A= J(31m, AT = h/180 and A = h/6 {80)
yielding for the simply supported beam of length 1 (where 4, = =%}
h™% < Cy(K) < 86h™*. (81)

In the case of a nonuniform mesh we scale the matrix by changing the u, nodal values
into ,u, where h, = (b, ). We thus obtain from equation (79), assuming that
g, = 1/Ne, that

Ne
A = 2/180Neh?,  Ne/z* = Y 1/h% (82)
e=]

Consequently, since in this case A% < 36/h};,. we get for the simply supported beam
(® = 48) that

Ne'%max
CAK)Y < 135—}12. = {83}
We could have obtained a sharper upper bound on C,(K) than that given in equation (83)
by either a more careful scaling or by the addition of rotary inertia to go with the u, nodal
values. In the coming sections we will also derive a better bound on C,{K) via the maximum
norms.

For the circular ring we obtained elsewhere [7] that
r 2
C,(K) = c(»t») h™? (84)

where r/t denotes the radius of curvature to thickness ratio of the ring, h the size of the
element and where ¢ is independent of 7, t and h. According to equation (84) the stiffness
matrix K becomes ill-conditioned as the ring becomes thinner. However, in this case the
extensional contribution to the solution which is proportional to ¢* diminishes too. On
the other hand the total discretization error might be much higher than the extensional
portion of the energy and there will be no need to introduce into the extensional energy
the exact t. The thickness should be made to diminish simultaneously [8] with the mesh
so as to balance the extensional energy and the discretization error.

In the same manner, by balancing the shear energy portion and the discretization
error we were successful in constructing [9, 10] well conditioned C° plate bending elements,

UNIFORM MESHES; GENERAL RESULTS

Using the present bounding technique we are able to obtain for the case of a uniform
mesh results of considerable generality.
We consider in this section problems associated with the operator

V2m = (32/ax% + 82/0y? + 8Y/D2)"

Here for one element

(u,u) = J wdxdydz (85)
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where 0 < x <h, 0<y<h and 0 <z < h With the mapping x = h¢, y = hé and
z = h&, equation (75) is changed into

{u,u) = h"f u*dédndl (86)

in which v is the dimension and 0 < £ < 1,0 < n < 1 and 0 < { < 1. If the nodal values
are scaled in such a way that & is eliminated from the interior of the element matrices
{(h appears inside these matrices when the nodal values include derivatives of various
degree} then

AT =ch and A =i 87

¢, and ¢, being independent of h.
The element stiffness matrices are obtained from

E(u,u) = h*~ " f Vmu Vmudé dy dg (88)
where g
Um = (@meem, amjon™, emerm). (89)
Thus if & is scaled out from the interior of k, equation (78) yields
PIESNN M (90)
and consequently
esh™2™ < Cy(K) < ch™2m 1)

where ¢, and ¢ are independent of 4, and where h was assumed small enough for g, to
be replaced by 4,.

Equation (91) is of far reaching consequences. It indicates that whatsoever the degree
of the shape polynomial and whatsoever the type of nodal values, the rate at which the
condition number grows depends, at least in the case of a regular mesh, solely on the
order of the problem. Fourth order problems are thus liable to be more ill-conditioned
than second order problems. Also, since C,(K) grows with h, for the same number of
clements one dimensional problems are likely to be more ill-conditioned than two and
three dimensional problems. More important, since the rate at which C,(K) increases
with the mesh refinement does not depend on the degree of shape polynomials, one is
able to obtain a better total (discretization + round-off) accuracy by the use of higher
order elements. This has indeed been confirmed numerically in Refs. [1, 7 and 22]

MAXIMUM NORMS
The maximum (/) norm ||K| . of the matrix K(N x N) is defined by

N
1Kl = max 3 K. (92)
i=1

Correspondingly the maximum condition number is defined by
Co(K) = K| IK™ i (93)
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and since || K|, = |K];, C,(K) > C,(K) and a bound on C_(K) constitute a bound
also on C,(K).

It is simple to bound ||K||,,. In fact, if the maximal number of elements meeting at a
point is p.,, then each row of K is assembled from no more than p,,,, elements and we
have that

IKlle < Pmax max |k |, e=1,2,...,Ne (94)
In order to bound {{K~'|j, we again make use of the variational nature of the finite

element method. The finite element solution is obtained by minimizing the total potential
energy m(u), that can be written in the general form

m(u) = E(u, u)—(f, u) 95

where E(u, u) is the internal (say elastic) energy and where (f, u) is the work of the forces
f. Let 1 denote the finite element solution ; then

afi)—n(u) = E(u—a,u—14) > 0. (96)
Since the first variation of n(u) vanishes at the solution & (or u) we have that
E@,0) = 3(f,8) and (@) = —3(f,8) 97)

and since E(u, u) is positive definite, a positive point force results in a positive displacement
at the point of application. It also results from equations (96 and 97) that

(fsw) = (f, ). (98)
Choosing f to be a point unit force (impulse) at P we get that
u(P) = i(P) (99)

which means that at the point of application of the load the variational (finite element,
Rayleigh-Ritz) solution never exceeds the exact solution.

Let G(x,¢) be the influence (Green’s) function of the structure. The finite element
response at nodal point j to an impulse at nodal point i is K;;' while the response at the
point of application itself is K;;'. We conclude therefore from equation (99) that (the
existence of K~ ! is assured in the [, norm and hence also in the I, norm)

max (K;Y) <T, I' = max G(x, x). (100)

1<i<N

It is also readily shown that for a positive definite matrix K of dimension N

IKl., <N max (K;),K; > 0. (101)
1gi<N

Combining equations (92, 100 and 101) we get that
Co(K) < NTppy,, max|lk, |, (102)

which was also obtained in Ref. [14]. Notice that ' = max G(x, x) is an intrinsic property
of the structure. It plays the role of the fundamental eigenvalue in the /, norms. However,
a large I' means a flexible structure whereas a large 4, means a stiff structure.

A remarkable feature of the bound in equation (102) is that it does not include estimates
for the mass matrix and we therefore expect from it better bounds than from the [,
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estimates. On the other hand I" mighi well become infinite for some problems or for some
choice of nodal variables making the /, estimates less general. A possibility to overcome
this is by spreading the forces in equation (98) over small areas rather than concentrating
them at a point and we will soon employ this device.

The advantages and limitations of equation (102) will become apparent when applied
to some specific problems. We start with the fixed string whose element matrices are
given in equation (47). Here

maxllk”oc = 2/hmin’ I'= % and Pmax = 2 (103)
and therefore according to equation (102)

C(K) < N/h (104)

min

similarly to the /, bound in equation (40). This is a rather simple case since for an impulse
the finite element solution coincides here with the true solution. The pattern of entries in
K~! can be readily deduced from this: (a) all entries in K~ ' are positive (maximum
principle), (b) the largest diagonal entry is at the center and is bounded below by % for
any number of elements and any mesh ratio, (¢) K~ ! is dense (this denseness expresses
the fact that a disturbance is an elliptic system as caused by the application of a point
force propagates to all points) and (d) the off-diagonal entries in K~ ! decrease linearly as
one moves away from the diagonal.

With regard to K ! there can be a fundamental difference between elements having
only u as nodal values and those that include also the derivatives of w. For the latter the
influence function G(x, £) in equation (100) should be replaced by its derivatives i.e. the
response not only to unit forces but also to unit torques. But not all structures, even if
able to carry point load, are able to carry point torques and the bound in equation (102)
fails. This suggests that in this case the diagonal entries in K~! corresponding to the
higher derivatives do not remain bounded (unless scaled) as the mesh is being refined.

Also for the Laplace equation in two and three dimensions equation (102) is not
directly applicable since the fundamental solution for these problems is log(1/r) and 1/r
respectively, and the origin r = 0 is a problem. We can, however, gain insight into the
behavior of || K|/, and |[K '], in the case of a two or three dimensional Laplace equation
by computing these norms directly from the stiffness and flexibility matrices. To this end
we consider a circular and spherical domains with u = 0 on the boundary. For the
membrane we have

2¢—1 1 -1
k, = 105
©2 ( -1 1) 10y
and hence
1 -1
K 1[—1 4 -3 (106)
T2 -3 8 =5 [
NN N
The maximum deflection (in fact, max K;; !) due to a point force is given here by
1 1 1
Upay = 2| 145424 ... + (107)

3°5 2N-1
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such that for a large N, u,,, = 2log N. The sum of the (positive) displacements along the
radius (sum of K * over j) renders

2 z+-§-+~,§«+,..+2§_1). (108)
Or
K™Y, = N, |Kll, = 2N and C(K)= 2N2 (109}
In the same manner we obtain for the sphere
Upax = N(L+3+F5+35+..) (110)

OF Uy, == N. The sum of the displacements along the radius is given by
N +2+3%5+35+..0)
From which
IK™ ', = NlogN, |K[, = 9N and C,(K)=9N%logN {(1in

is obtained.

It is interesting to notice the difference between the behavior of K;* in the case of a
string {with bounded Green’s function} and in the case of an elastic solid, or membrane
{with unbounded Green’s function). In the first case K, remains bounded as the mesh
is being refined while in the latter two cases it grows like log N in two dimensional prob-
lems and like N in three dimensional problems, in analogy with the corresponding funda-
mental solutions log(1/r) and 1/r.

From the element matrices in equations {54 and 70} it is obvious that the {positive
definite} stiffness matrix for the Laplace equation discretized with first order {linear}
triangular and tetrahedral elements will be such that K;; < 0 for all i # j, provided that
the elements have acute angles. It is a well known theorem that in this case K;;* > 0 for
all i, j. We will make use of this fact to derive bounds on € (K) for matrices generated
from such elements. Consider then the Laplace equation with u = 0 on the boundary
discretized by first order acufe triangular or tetrahedronal elements. Inside each element
we draw a circle {sphere} of radius g centered around the element’s center of area and
assume a uniform load 1/ over it, where o denotes the area {volume) of the inscribed
circle. Let u and 4 be the exact and finite element solutions, respectively, due to this load.
Equation (98) yields in this case

1 xéﬁzif ddp {112
Vi

wd,

or since # is linear inside each element equation (112} is reduced to

1 N
—ﬁ-;fwudu =i, {113)

where the subscript ¢ stands for center of area {gravity). Also, for the triangular element
with the three nodal points 1, 2 and 3

ﬁc = %(ﬁ1+ﬁ2+ﬁ3). (114)
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The element load vector b for each triangular element is

b=y i (115)
and consequently
0, = &K'+ K3+ K33 + 2K, + 2K 15 +2K55). (116)
Since K;;' > 0, equation (116) leads to
i, = %m?x(K;’). (117

To estimate the integral in equation (113) we construct a circle completely enclosing the
original domain. Since u can be extended from the boundary of the original domain to
the circle by u = 0, the total potential energy of the circle will be lower than that of the
original domain. If the radius of the encircling disc is R and the loaded circle inside the
element is @, we obtain that

1
i, < 8—[1 +4 log(R/a)] (118)
s
and consequently
9N
K™Y, < g[l +4 log(R/a)]. (119)
Since here
IKllo < 6Pmax/tg 0 (120)
we finally get that
C(K) < 2pmaxN ctg 0[1 +4 log(R/a)] (121)

0 being the smallest angle and a the radius of the smallest circle inside the elements, which
is centered around their center of gravity.

For the case of three dimensional problems discretized with first order acute tetra-
hedron we obtain in the same manner that

1 {6R
i< ——|—— 122
e = 41rR( 5a 1) (122)
or
4 [6R

K HY<—[—-— 123
max(K )_nR s ) (123)

Thus

4N[6R

K! —=- 124
I e < 7TR( 5 ) (124)
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Also, according to equation (71)

and therefore
N 6R
— ——— 12
C.(K) < Rpmmex( o1 (126)

a being again the radius of the smallest sphere inscribed inside the element and centered
around its center of gravity.

Equation (126) suggest that in the I norm the stiffness matrix for the three dimensional
problem be more illconditioned than that for the two dimensional case. This conclusion
is also implied in equations (109 and 111) obtained by direct calculations. Nevertheless,
even if the bound on K;; ! is not too pessimistic the bound on |[K ~!||_, in equation (124)
obtained from equation (101) could not be that good since in three dimensional problems
the off-diagonal entries in the stiffness matrix vary faster (somewhat like 1/r) than those
in the corresponding two dimensional problems (which vary somewhat like log(1/r)).

The beam element whose matrices are given in equation (79) is associated with the a
nodal displacement and a nodal rotation. To bound K;! corresponding to these values
we need the exact response of the beam to both a unit force and a unit torque. In both
cases I' is bounded and independent of h and we get from equation (102)

C_(K) < 48T Nh; > (127)

even without any scaling.
Knowing a bound on C,(K) we can bound C_(K) through the inequality
1K™ o < NEIKTH, (128)

leading readily with equation (91) to
C(K) < ch™¥m2 (129)

where v denotes the dimension. For the string (m = 1, v = 1) equation (129) yields
C.(K) < ch™*? which is rather pessimistic.

MIXED VARIATIONAL PRINCIPLES

To avoid the high continuity requirements in fourth (or higher) order problems they
can be decomposed into a system of lower order equations with extra unknowns. As an
example to this consider the beam equation

d*u

=S 0s<x<lL (130)

It can be separated into the two equations

d?u d*M
_ _ 131
2= M and O =f (131)
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where M 1s proportional to the bending moment. Typical boundary conditions for the
beam are:
() u=0M=0 simply supported end,
(2) u=0,du/dx =0 clamped end, (132)
(3) M =0,dM/dx = 0 free end.

We associate with equations (131) and (132) the quadratic functional ng(u, M)

1
nR(u,M)=J- (1M2+gu—gﬂ+uf) dx. (133)
o \2 dx dx

Setting the first variation of ng(u, M) equal to zero we obtain as Euler’s equations the two
equations in (131) plus the following natural boundary conditions: (a) Where M is not
prescribed du/dx = 0. (b) Where u is not prescribed dM/dx = 0. Obviously, it is sufficient
for both u and M in equation (133) to be only continuous and for a finite element scheme
in which u and M vary linearly inside the element we get the global system

((1))5 IG)Z)(L) B (g) (134)

where

In practice the entries in equation (134) are ordered in a band form but for analytic
reasons we find it convenient to keep the ordering of equation (134). We notice also that
D, is the second order difference operator or the stiffness matrix of the string whereas G
1s its mass matrix.

To find the condition of the global matrix in equation (134) we have to solve

o ol =
p! G |\Mm VY (136)

which after the elimination of u from it is reduced to

DID,M = (A2 1 — AG)M. (137)

Since D, is a second order difference operator, DD, is a fourth order operator with
eigenvalues ranging from 0(1) to 0(h~%). Hence, since G is almost an identity matrix (in
the sense that its eigenvalues are bounded), the range of 2 is computed from the equations

1=72—4 and h ™ *=i*—i (138)

yielding that the condition number of the global matrix in equation (135) varies like
0(h™?).
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Thus, by decomposing the biharmonic equation into a coupled system of second
order equations we were able to reduce the condition number of the giobal matrix from
O(h~*) to 0(h~ 2). For the same number of elements the global matrix of the mixed principle
is better conditioned than the corresponding global stiffness matrix. But that is not yet
the whole story. It remains to be seen how the discretization error behaves in both cases
and how many elements are required in each case for a comparable discretization accuracy.
Indeed, some numerical experiments [1] suggest that even though the condition of the
mixed matrix grows slower than the condition of the stiffness matrix, the higher rate of
convergence of the latter makes it possible to obtain with it the same discretization accuracy
as with the mixed principles with less elements. Therefore, at final counts the total (dis-
cretization + round-off) error in the displacement method might not be less than that of
the mixed method.

The indefiniteness of the global matrix with mixed principles is also a drawback, but
an obvious case where separation is useful is where the systems completely decouple as
with simply supported beams or polygonal plates.
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AGCTpakT—YYpeKAAIOTCA BEPXHHUE M HUXKHHE NpPEeAesbl CIEKTPANBHBIX H MAKCHMaJIbHbIX HOPM [M crieno-
BaTEJILHO COOTBETCBYIOLIMX 4MCEJI COCTOSNHMS] Ui MATPHL JXKECTKOCTH, TMOKOCTH [oOpaTHAas BEIMYMHA
HKECTKOCTH] U Macchl, 06pa30BaHHbIX U3 PETYJIAPHBIX M HEPETYJIAPHBIX CETOK KOHEUHbIX 2T1EMEHTOB. BhiBoa-
ATCS BbIPAXEHUs B SBHOM (opMe s 3THX IPENENOB, B BHAE COOCTBEHHBIX NTAPAMETPOB M NapaMeTPOB
pa3znena. OTH BbIpaXEHMs KacalOTCA 3aJay BTOPOTO M YE€TBEPTOTO MOPSOKOB, B OJHOM, ABYX MJIH TpexX
pa3Mepax, AN QUCKPETHBIX 3NIEMEHTOB JIMHEHHBIX, TPEXYTOJILHBIX W YETHIPEXTPAHHDIX.



